Human Health & Physiology

11.4 - Reproduction

Spermatogenesis

- Production of sperm cells takes place in the seminiferous tubules of the testes
- Developing sperm are nourished by <u>Sertoli</u>
- Testosterone is produced by *interstitial* <u>cells</u>
- Mitosis produces 1° spermatocytes (2n)

Spermatogenesis

- Meiosis I produces 2° spermatocytes (n)
- Meiosis II produces sermatids (n) which differentiate into mature spermatozoa
- RESULT = 4 haploid sperm cells
- Produced ongoing from puberty until death

Spermatogenesis

Roles of hormones

- FSH stimulate 1° spermatocytes to mature into 2° spermatocytes
- LH stimulate interstitial cells to produce testosterone
- Testosterone stimulate maturation of 2° spermatocytes into spermatozoa

Oogenesis

- Production of ova (eggs) occurs in the ovaries
- Mitosis produces 1° oocytes (2n) before birth
- Meiosis I stops at prophase I until puberty
- Meiosis I results in a 2° oocyte (n) and a polar body

Oogenesis

- Meiosis II produces an ovum and possibly 2 polar bodies
- The ovum will only progress to the end of meiosis if fertilized
- Polar bodies do not go beyond metaphase II

Oogenesis

- RESULT = 1 mature egg cell(+3 polar bodies)
- 400 000 primary follicles at birth
- Mature at puberty
- Released once a month until menopause

Comparison of spermatogenesis & oogenesis

Spermatogenesis	Oogenesis
Millions of sperm cells are produced every day	Typically, one secondary oocyte is ovulated per menstrual cycle
Four gametes are produced for each germinal cell which begins meiosis	One gamete is produced for each germinal cell which begins meiosis (plus polar bodies)
The resulting gametes are very small	The resulting gametes are very large
Occurs within testis (gonad tissue)	Occurs within ovaries (gonad tissue)
Damon, A., McGonegal, R., Tosto, P., & Ward, W. (2007). Higher Level Biology. England:	

Pearson Education, Inc.

Comparison of spermatogenesis & oogenesis

Spermatogenesis	Oogenesis
Spermatozoa are released during ejaculation	Secondary oocyte is released during ovulation
Haploid nucleus results from meiosis	Haploid nucleus results from meiosis
Spermatogenesis continues all through life (starting at puberty)	Ovulation starts at puberty, occurs with each menstrual cycle, then stops during menopause
Begins with mitosis	Begins with mitosis
Damon, A., McGonegal, R., Tosto, P., & Ward, W. (2007). <i>Higher Level Biology</i> . England: Pearson Education, Inc.	

Semen production

- Sperm move to the <u>epididymis</u> where they continue to mature and develop the ability to swim
- During ejaculation, they combine with fluid from the seminal vesicle and prostrate gland
- **Prostate gland:** adds alkaline fluid to neutralize the pH of the acidic vagina

Semen production

- <u>Seminal vesicle:</u> fluid contains fructose to provide energy, prostaglandins to stimulate female contraction, and mucous for protection
- All this = <u>SEMEN</u> (10% is sperm cells; 90% is fluid)

Acrosome reaction

- Fertilization is the union of egg and sperm to produce a zygote
- Fertilization occurs in the fallopian tubes
- One sperm will penetrate the egg
- The sperm initially bind to receptors on the outside of the egg
- Enzymes in the acrosome will degrade the zone pellucida

Acrosome reaction

- Plasma membranes from the sperm and egg fuse
- Cortical granules release enzymes that harden the zona pellucida preventing any other sperm from entering
- The sperm nucleus enters the egg and combines with the egg nucleus

Early embryo development

- After the first mitotic division occurs there is a cleavage division in which no cell growth occurs
- A hollow ball of cells called a **morula** forms
- This travels to the uterus (~4 days)
- Unequal divisions occur and form a fluid filled ball of cells called the <u>blastocyst</u>

Early embryo development

- The inner cell mass will form into the embryo
- The fluid filled space will form the amnion
- Around 7 days after fertilization, the blastocyst will implant into the uterine wall
- The developing fetus is surrounded by an <u>amniotic sac</u> filled with <u>amniotic fluid</u>
- This offers protection and support for the fetus

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b.

Role of HCG in early pregnancy

- HCG = Human Chorionic Gonadotropin
- Hormone secreted by the blastocyst
- Stimulates the corpus luteum to continue to produce progesterone and estrogen which maintains the uterine lining (endometrium) and inhibits FSH and LH
- HCG levels will increase during the first 8-10 weeks of pregnancy
- HCG is excreted into the urine = pregnancy test

Structure & role of placenta

- The placenta connects the mother to the fetus through the umbilical cord
- The placenta runs through a cavity of maternal blood
- Two umbilical arteries carry deoxygenated blood to the placenta
- One umbilical vein carries oxygenated blood to the fetus

Structure & role of placenta

- Site for exchange of nutrients and waste between the mother and fetus
- Will take over the role of producing progesterone and estrogen throughout pregnancy
- Levels will rise throughout gestation
- A drop in the production of progesterone is the signal for labour to begin

Birth process

- Progesterone levels drop
- Prostaglandins are secreted from the fetus (placenta) to initiate contractions and stimulate the pituitary gland
- Oxytocin is produced when the baby's head pushes against the cervix
- Oxytocin blocks progesterone and causes uterine contractions

Birth process

- Contractions of the uterus push the fetus against the cervix which in turn causes more oxytocin production = positive feedback
- Strength of uterine contractions increase as more oxytocin is produced
- Contractions continue until the placenta is delivered after birth

References

- 1. Damon, A., McGonegal, R., Tosto, P., & Ward, W. (2007). Higher Level Biology. England: Pearson Education, Inc.
- 2. Raven, P.H., Johnson, G.B., Losos, J.B., Mason, K.A., & Singer, S.R. (2008). *Biology*. (8th ed.). New York: McGraw-Hill Companies, Inc.
- 3. Blake, L., Craven, M., Dobell, D., Flood, N., Jasper, G., Little, C., Mason, A., Price, G., Banerd, K., Bocknek, J., Letcher, M., & Little, D. (2003). *Biology* 12. Canada: McGraw-Hill Companies, Inc.
- 4. Encyclopedia Britannica Online. <<u>www.britannica.com</u>>