

Dec 10-10:57 AM

Nov 30-12:56 PM

Dec 10-10:46 AM

WHY CELLULAR RESPIRATION!

- 1) To break bonds in glucose to produce 6 CO₂
- ₂₎ To move hydrogen atoms from glucose to oxygen, forming 6 ½O
- 3) To trap as much free energy released as possible in the form of ATP (about 40% efficient

Why not in one step??

Nov 29-10:29 PM

Nov 30-1:00 PM

Nov 30-1:33 PM

Nov 30-1:01 PM

Nov 4-2:44 PM

Dec 10-10:47 AM

Nov 6-12:45 PM

Nov 4-3:00 PM

Dec 1-11:57 PM

Dec 1-11:43 PM

Nov 10-2:11 PM

Dec 10-10:51 AM

Stage 4: Electron Transport Chain • Occurs on the inner mitochondrial membrane.

- The inner membrane is folded to allow more ETC's
- Results in the formation of 32 ATP

Components of the ETC are arranged according to increasing electronegativity

Components of ETC NADH dehydrogenase Ubiquinone (Q)

- Cytochrome b-c1 complex
- Cytochrome c
 Cytochrome oxidase complex

Increasing electronegativity

- NADH and FADH2 transfer electron to proteins embedded in the cristae.
- Electrons move "downhill" from one carrier to another through a series of redox reactions
- As the electrons travel through each electron acceptor. hydrogen ions are "pumped" out of the matrix into the intermembrane space

Dec 3-2:48 PM

Dec 10-10:52 AM

The formation of ATP by oxidative phosphorylation and chemiosmosis

• Protons pumped into the intermembrane space create an electrochemical gradient

electro = charge difference (+ between membranes, - in matrix) chemical = concentration (more H+ between membranes)

- Protons can only reenter the matrix through the ATP synthase
- This drives the production of ATP by oxidative phosphorylation
- The final electron acceptor is oxygen, which combines with 2 protons to form water.
- This process is called CHEMIOSMOSIS!!
- For each NADH, 3 molecules of ATP SHOULD BE produced
- For each FADH2, 2 molecules of ATP are produced

WHY????

Dec 3-3:03 PM

Dec 10-10:52 AM

Dec 12-10:04 AM

	ATP	NADH	FADH2	Location
Gycolysis	2	2	-	Cytoplasm
Transition Reaction	-	2	-	Mitochondr al matrix
Krebs Cycle	2	6	2	Mitochondr al Matrix
ETC	32	-	-	Inner membrane
TOTAL	36	10	2	

Dec 3-2:57 PM