Membrane Transport

Passive Transport

 The movement of materials across a cell membrane <u>without</u> the use of energy (ATP)

 Movement of particles <u>along</u> a concentration gradient → from an area of higher concentration to an area of lower concentration (WITH a concentration gradient)

Diffusion

- <u>2nd Law of Thermodynamics</u> governs biological systems
 - universe tends towards disorder (entropy)

Diffusion

♦ movement from HIGH → LOW concentration

Simple Diffusion

- Movement of particles from HIGH to LOW concentration areas
 - "passive transport"
 - no energy needed
 - Will continue until equilibrium is achieved

Example: Movement of O₂ into cells and CO₂ out of cells

Facilitated Diffusion

- Molecules too large for simple diffusion or are hydrophilic
- Diffusion through protein channels \bullet
 - channels move specific molecules across cell membrane
 - <u>no energy needed</u>

cell so the concentration gradient is maintained; Small ions

Osmosis

 Water is very important to life, so we talk about water separately

- Diffusion of <u>WATER</u> through a selectively permeable membrane from an area of *HIGH concentration* of <u>water</u> to an area of *LOW concentration* of <u>water</u>
 - Water moves from an area of <u>lower solute</u> concentration to an area of <u>higher solute</u> concentration

Osmosis is important to aquatic organisms. Kidney's use osmosis to regulate water balance in the blood.

Concentration of water

- Direction of osmosis is determined by comparing total <u>solute</u> concentrations
 - <u>Hypertonic</u> more solute, less water
 - Hypotonic less solute, more water
 - Isotonic equal solute, equal water

net movement of water

Managing water balance

Cell survival depends on balancing water uptake & loss

Managing water balance

- Hypotonic
 - a cell in <u>fresh water</u>
 - high concentration of water around cell
 - problem: cell gains water, swells & can burst
 - <u>example</u>: <u>Paramecium</u>
 - <u>solution</u>: <u>contractile vacuole</u>
 - pumps water out of cell
 - Uses ATP
 - plant cells

ATP

- turgid = full
- cell wall protects from but

No problem, here

KABOOM!

Hypotonic solution

Н,О

Lysed

H₂O

Turgid (normal)

freshwater

Pumping water out

• Contractile vacuole in *Paramecium*

² Managing water balance

Managing water balance

Isotonic

3

- animal cell immersed in mild salt soluti (Isotonic solution
- no difference in concentration of water H₂O H₂O
 between cell & environment
 That's

perfect!

- <u>problem</u>: none
 - -no <u>net</u> movement of water
 - -<u>cell in equilibrium</u>
 - -volume of cell is stable
- <u>example</u>: <u>blood cells in blood plasm</u> **L could** <u>be better</u>...

-slightly salty IV solution in hospital

Flaccid

balanced

Aquaporins

1991 | 2003

- Water moves <u>rapidly</u> into & out of cells
 - evidence that there were water channels
 - protein channels allowing flow of water across cell membrane

Roderick MacKinnon Rockefeller

Do you understand Osmosis...

Cell (compared to beaker) \rightarrow hypertonic or hypotonic Beaker (compared to cell) \rightarrow hypertonic or hypotonic Which way does the water flow? \rightarrow in or out of cell

Active Transport

- Uses ATP (energy) to move materials across a cell membrane <u>against</u> a concentration gradient.
 - conformational shape change transports solute from one side of membrane to other
 - protein "pump"
 - "costs" energy = ATP

Active transport

Many models & mechanisms

Na⁺/K⁺ pump

- Membrane transport proteins pump Na⁺out of the cell and K⁺ into the cell against the concentration gradient. Uses ATP!
- Nerve cells must maintain a higher concentration of Na⁺ outside the cell and K⁺ inside the cell to function.

Getting through cell membrane

- Passive Transport
 - <u>Simple diffusion</u>
 - nonpolar, hydrophobic molecules
 −HIGH → LOW concentration gradient
 - Facilitated transport
 - polar, hydrophilic molecules
 - through a protein channel
 - $-HIGH \rightarrow LOW$ concentration gradient
- <u>Active transport</u>
 - against concentration gradient
 - LOW \rightarrow HIGH
 - uses a protein pump (requires ATP)

What about large molecules?

Moving large molecules into & out of cell

 through vesicles & vacuoles

Endocytosis – moving materials INTO the cell

- <u>phagocytosis</u> = "cellular eating"
- <u>pinocytosis</u> = "cellular drinking"
- <u>receptor-mediated endocytosis</u> Molecules bind to receptors on the outside of the cell membrane.

Exocytosis – moving materials OUT of the cell

exocytosis

Insulin released from the pancreas into the bloodstream

Endocytosis

phagocytosis

pinocytosis

receptor-mediated endocytosis

White blood cells (macrophages) take in bacteria. fuse with lysosome for digestion.

End products of digestion. non-specific process Invagination (pinching) of cell membrane forms a vesicle inside the cell.

LDL's taken into cell. triggered by molecular signal

Transport summary

Any Questions??

Review Questions

1. A solution of 1 *M* glucose is separated by a selectively permeable membrane from a solution of 0.2 *M* fructose and 0.7 *M* sucrose. The membrane is not permeable to the sugar molecules. Which of the following statements is correct?

- A. Side A is hypotonic relative to side B.
- B. The net movement of water will be from side B to side A.
- C. The net movement of water will be from side A to side B.
- D. Side B is hypertonic relative to side A.
- E. There will be no net movement of water.

- 2. You observe plant cells under a microscope that have just been placed in an unknown solution. First the cells plasmolyze; after a few minutes, the plasmolysis reverses and the cells appear normal. What would you conclude about the unknown solute?
 - A. It is hypertonic to the plant cells, and its solute can not cross the pant cell membranes.
 - B. It is hypotonic to the plant cells, and its solute can not cross the pant cell membranes.
 - C. It is isotonic to the plant cells, but its solute can cross the plant cell membranes.
 - D. It is hypertonic to the plant cells, but its solute can cross the plant cell membranes.
 - E. It is hypotonic to the plant cells, but its solute can cross the plant cell membranes.